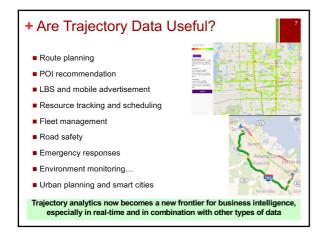
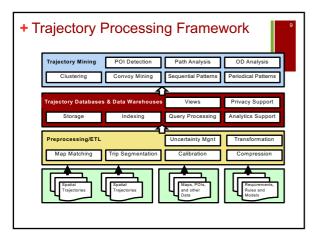
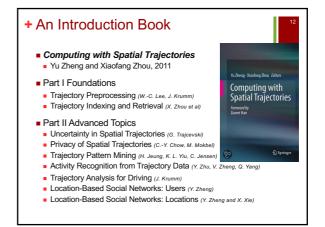
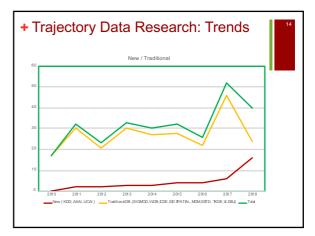

Trajectory Data

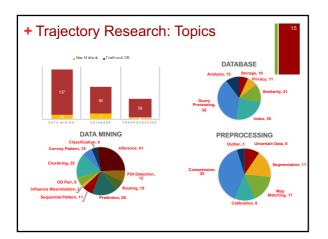

...data about moving objects

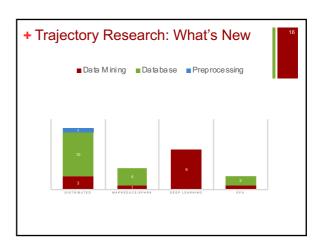


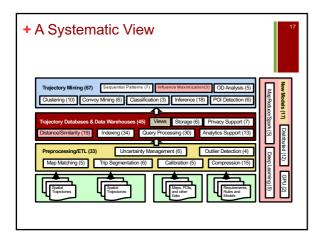
Processing Trajectory Data

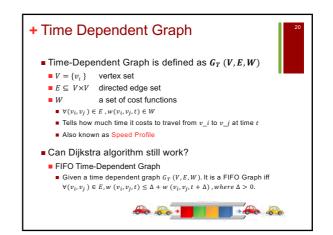

...monitoring, managing and processing

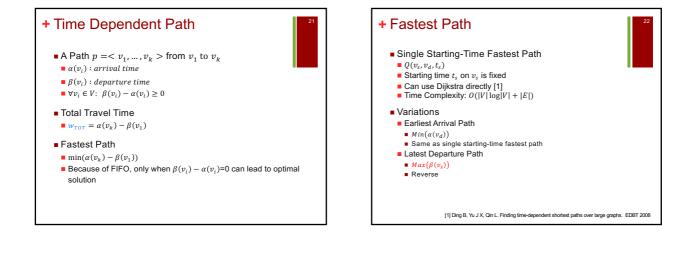

The Past ...driven by curiosity

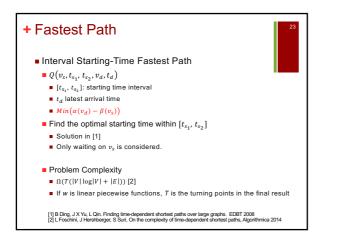

+ Moving Objects/Trajectory Work


- Initially on foundations
 - Data representation, query languages and basic operations, indexing methods etc.
- Curiosity-driven
 - Imagine a special "novel" type of query, find a "novel" indexing method and then use "standard" methods to improve efficiency
- Not directly useful
 - Strong assumptions (not useful in practice)
 - Highly specialized indexes (cannot be implemented)
- Also, data mining, social networks, recommender...

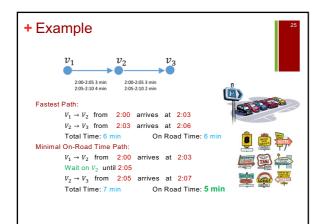


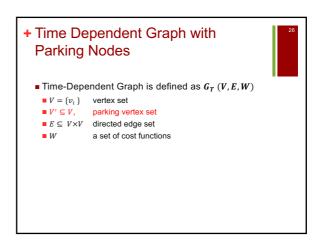


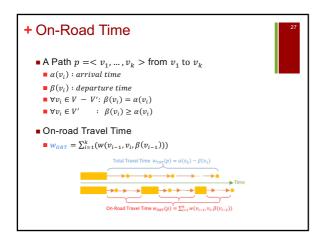

+ Some of Our Work

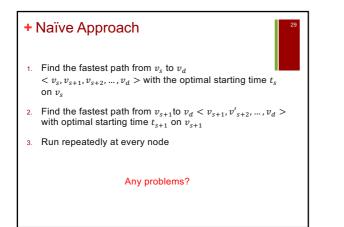

Prediction of movement [ICDE08] and paths [VLDBJ10], trajectory simplification with error bound [VLDB08], path nearest neighbor query [SIGMOD09], searching trajectory by locations [SIGMOD10], most popular routes [ICDE11], probabilistic range query [EDBT11, ICDE12], materialized shortest paths [TODS12], spatial keyword search for trajectories [ICDE13,15,16], clue-based queries [VLDB17], minimum on-road time routing [VLDB17, VLDBJ18], trajectory calibration [SIGMOD13, VLDBJ15], route and location recommendation [ICDE14, SIGKDD15, ICDE16, TOIS16, TIST18], trajectory exploration and summarization [ICDE15], in-memory trajectory databases [CIKM14, SIGMOD15], privacy-preserving trajectory search [ICDE15], data sparsity [MDM18], ML for speed prediction [IJCA118]

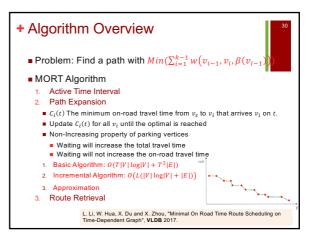
Minimum On-Road Time Route Planning

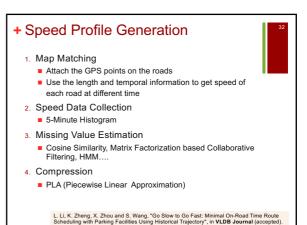

...yet another "new" type of queries

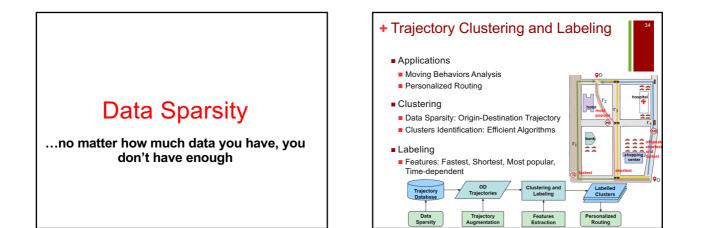


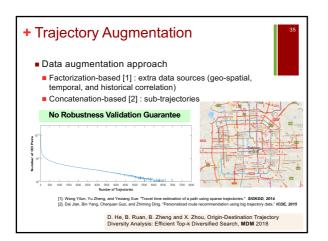


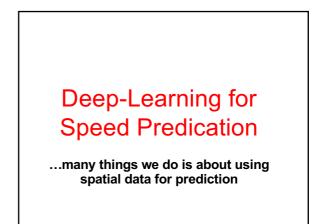


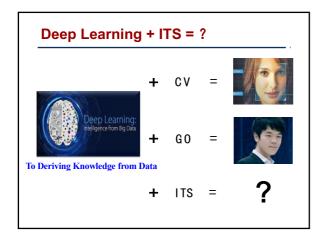


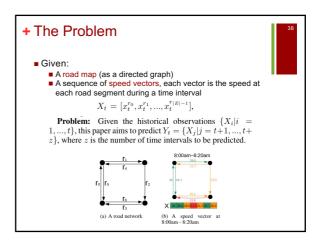

Graph Type	Path Problem		Objective		Waiting
Static Graph	Shortest Path		$\sum_{i=s}^{d} Weight(p_{i,i+1})$	Total Static Weight	No
Time Dependent Graph	Single start time fastest path	General Earliest Arrival Latest Departure	$\sum_{i=s}^{d} Time(p_{i,i+1})$ $Min(Arrival(v_d))$ $Max(Depart(v_s))$	Total Temporal Weight	No
	Interval start time fastest path		Min(Arrival(v _d) – Depart(v _s))	Minimum Total Time	Source Vertex $V' = \{v_s\}$
	MORT		$Min(\sum_{i=1}^{k-1} w(v_{i-1}, v_i, \beta(v_{i-1})))$	Minimum On-Road Time	A set of parkin vertices $V' \subseteq V$
		Total Travel T	$w_{ror}(p) = \alpha(v_k) - \beta(v_1)$	→ Time	

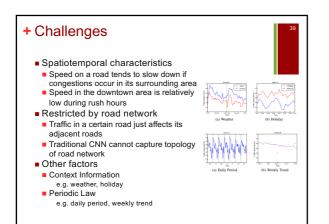


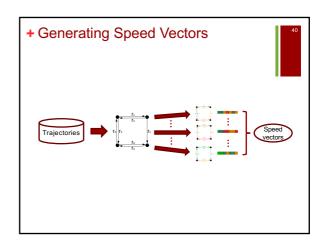


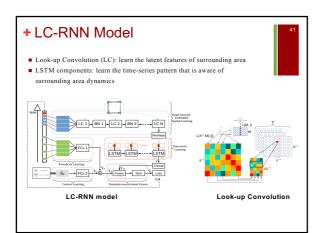

Road Speed Profile Generation

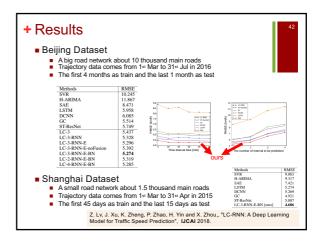

...another example of large-scale space problem

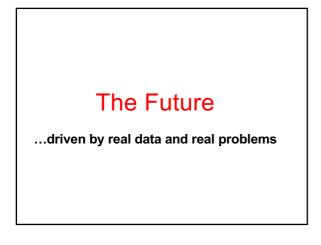


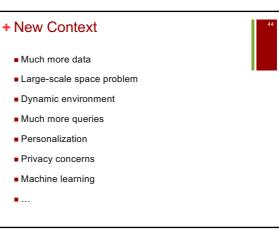


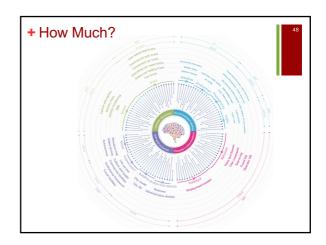








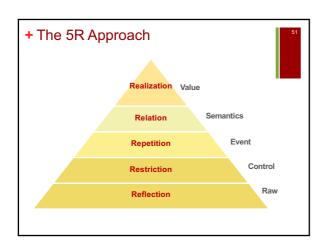


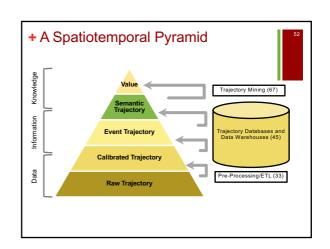


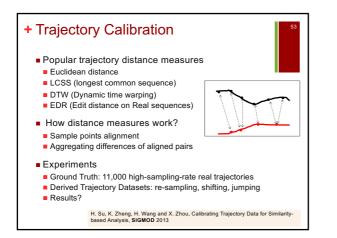
More Data

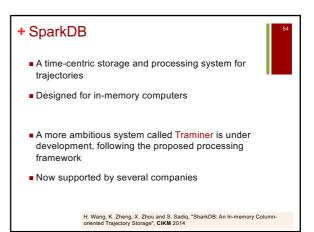
...more things can be done, but need a scalable and general purpose tool?

 + Trajectory Data in a Company A car navigation service provider Total trajectory data: 32 TB in size, 10.9 billion matched trajectories 							
	Current	Daily					
Company X (in-car navigation provider)	17.6TB	15M trajectories					
Company Y (map app provider)	14.5TB	5M trajectories					
Company Z (social network)	0.68TB	18M trajectories					
 Every day, ~40M new trajectories Sampling rates: 50% ~2s, 99% < 		its					


+ NavInfo DataHIVE (minedata.cn)						
Vehicle	Infrastructure	Environment	People			
Trajectories:	Standard maps	Weather	Voice and text			
- taxis	High res maps	Events	User comments			
- uber-like	Services POIs	Air quality	Search log			
- monitored	Culture POIs	Water quality	Travel log			
- commercial	Commercial POIs	Land & water info	Operators' OD			
- user generated	Health POIs	DEM & EEC	Workplace info			
Sensor/OBD data	Travel POIs	Satellite image				
Perception data	City models	Street views				
	City 3D Models	Roadside pictures				
	Business districts	Laser point cloud				
	Admin boundaries	Road condition				
	Organization maps	Traffic condition				
		Traffic incidents				




Trajectory Data Management System


...a common platform and API

Why Common Platform? Universal GPS, telecom tokens, social apps... Shared enterprise data For monitoring, predication, business insights... Separation of conceptual, logical and physical design Especially many computing platforms to consider today Other benefits we took for granted Optimization for data storage and query processing, scheduling, concurrency control...

Batch Fastest Path Queries

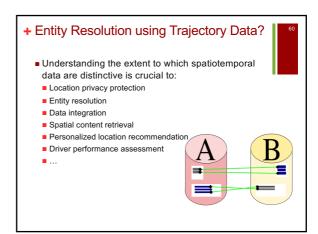
...can we do better if we can queries in batch?

+ A Real Problem

 At any time,100K-1M OD pairs are given for route planning

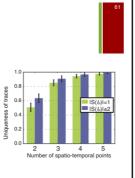
Options:

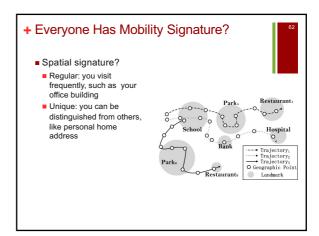
- Processing them in parallelMaterializing all-pair shortest path information
- Batch processing?
- Additional dimensions:
- Ridesharing
- Streaming requests (requests come continuously and cars are moving)

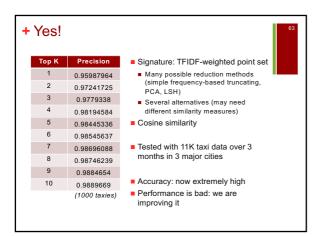

+ Batch Shortest Path Queries

- Case of 1:N
 - Dijkstra can be used straightaway
 - A* can be generalized
 - A good partition of N can improve efficiency
- Case of M:1
 - This can be done by reversing the above case
- Case of M:N
 - One-directional
 - Bidirectional
 - Partition-based

Trajectory-based Entity Linking


...everyone's movement pattern is unique





+ Only 4 Points, Really?

- "Unique in the Crowd: The privacy bounds of human mobility", Yves-Alexandre de Montjoye, César A. Hidalgo, Michel Verleysen & Vincent D. Blondel, Scientific Reports (2013)
- "four spatiotemporal points are enough to uniquely identify 95% of the individuals"

Some Other New Research Problems

...from discussions with companies doing trajectory analytics as their bread-and-butter business

+ A List of Problems

- ETA: O-side and D-side
- Map matching + map inferencing: an integrated approach
- Data fusion: among trajectory datasets and with others
- Similarity based search
- Traffic prediction: for prevention and intervention
- Transport mode detection: both large/small scale
- Personalized/constrained routing algorithms
- Privacy: can you really protect trajectory privacy?

Smart city – a holistic traffic solution

....

+ Conclusions

- New problems
- More data, more queries, more applications, more tools
- From SDBMS, spatial data mining to spatial learning
- Some current research problems
- Large-scale space problems
- Dynamic road networks
- Massive batch queries
- Personalization and privacy issues
- We need a DBMS approach!

